A Plant Location Guide for the Unsure: Approximation Algorithms for Min-Max Location Problems

نویسندگان

  • Barbara M. Anthony
  • Vineet Goyal
  • Anupam Gupta
  • Viswanath Nagarajan
چکیده

j∈Si d(j, F )    , where for any F ⊆ V , d(j, F ) = minf∈F d(j, f). This is a “min-max” or “robust” version of the k-median problem. Note that in contrast to the recent papers on robust and stochastic problems, we have only one stage of decisionmaking where we select a set of k facilities to open. Once a set of open facilities is fixed, each client in the uncertain client-set connects to the closest open facility. We present a simple, combinatorial O(log n+log m)-approximation algorithm for the robust k-median problem that is based on reweighting/Lagrangean-relaxation ideas. In fact, we give a general framework for (minimization) k-facility location problems where there is a bound on the number of open facilities. We show that if the location problem satisfies a certain “projection” property, then both the robust and stochastic versions of the location problem admit approximation algorithms with logarithmic ratios. We use our framework to give the first approximation algorithms for robust and stochastic versions of several location problems such as k-tree, capacitated k-median, and fault-tolerant k-median.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Methods for Solving the Equitable Location Problem with Probabilistic Customer Behavior

Location-allocation of facilities in service systems is an essential factor of their performance. One of the considerable situations which less addressed in the relevant literature is to balance service among customers in addition to minimize location-allocation costs. This is an important issue, especially in the public sector. Reviewing the recent researches in this field shows that most of t...

متن کامل

PERFORMANCE COMPARISON OF CBO AND ECBO FOR LOCATION FINDING PROBLEMS

The p-median problem is one of the discrete optimization problem in location theory which aims to satisfy total demand with minimum cost. A high-level algorithmic approach can be specialized to solve optimization problem. In recent years, meta-heuristic methods have been applied to support the solution of Combinatorial Optimization Problems (COP). Collision Bodies Optimization algorithm (CBO) a...

متن کامل

Exact algorithms for solving a bi-level location–allocation problem considering customer preferences

The issue discussed in this paper is a bi-level problem in which two rivals compete in attracting customers and maximizing their profits which means that competitors competing for market share must compete in the centers that are going to be located in the near future. In this paper, a nonlinear model presented in the literature considering customer preferences is linearized. Customer behavior ...

متن کامل

Inverse and Reverse 2-facility Location Problems with Equality Measures on a Network

In this paper we consider the inverse and reverse network facility location problems with considering the equity on servers. The inverse facility location with equality measure deals with modifying the weights of vertices with minimum cost, such that the difference between the maximum and minimum weights of clients allocated to the given facilities is minimized. On the other hand, the reverse c...

متن کامل

A New Model for Location-Allocation Problem within Queuing Framework

This paper proposes a bi-objective model for the facility location problem under a congestion system. The idea of the model is motivated by applications of locating servers in bank automated teller machines (ATMS), communication networks, and so on. This model can be specifically considered for situations in which fixed service facilities are congested by stochastic demand within queueing frame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2010